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Abstract

In the present paper, we prove that the outer automorphism groups of
nonabelian [topologically finitely generated] free profinite groups satisfy
strong indecomposability [i.e., the property that every open subgroup has
no nontrivial direct product decomposition].
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One of the most fundamental objects in the category of infinite nonabelian
profinite groups is a free profinite group

Fr

of rank r ≥ 2. With regard to the noncommutativity of Fr, the following fact
is well-known [cf. [1], Proposition 8]:

Fact 1: The center of Fr is trivial.

Here, we note that the “discrete analogue” of Fact 1 — i.e., the center-freeness
of free [discrete] groups of rank r — is relatively easy to prove by using explicit
descriptions of elements as “words”. On the other hand, since we do not have
such nice descriptions of [general] elements ∈ Fr, one cannot apply any similar
argument to the argument [using the notion of “words”] applied in the proof of
the discrete analogue of Fact 1 to prove Fact 1. [In fact, in the proof of of [1],
Proposition 8, cohomology theory of free pro-p groups is applied.] This situation
suggests that,

in general, the study of free profinite groups is much more difficult
than the study of free [discrete] groups.

In the present paper, we study the group structure of the outer [continuous]
automorphism group

Out(Fr),

which is much more complicated than Fr. [We recall that Out(Fr) admits a
natural structure of profinite group — cf. [14], Corollary 4.4.4.] Here, we note
that although Fr is topologically finitely generated, Out(Fr) is not topologically
finitely generated [cf. [14], Theorem 4.4.9] — this fact lies in stark contrast to
the fact that the outer automorphism group of a free [discrete] group of rank
r is finitely generated [cf. [7], §3.5, Theorem N1]. One of the most interesting
aspects of the present paper is that,

in our study of Out(Fr), we apply results in anabelian geometry for
hyperbolic curves over number fields/finite fields.

In fact, by applying a result in anabelian geometry for hyperbolic curves over
finitely generated fields of characteristic 0, the following fact — which concerns
the noncommutativity of Out(Fr) — has been proved by Tamagawa [cf. [16],
Theorem 7.4]:

Fact 2: The center of Out(Fr) is trivial.

In the following, let Q be an algebraic closure of the field of rational numbers
Q; K ⊆ Q a number field; Z a hyperbolic curve of genus 0 over K. Write Primes

for the set of prime numbers; GK
def
= Gal(Q/K); ZQ

def
= Z ×K Q; ΠZQ

for the

the étale fundamental group of ZQ [relative to a suitable choice of basepoint].
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[Here, we recall that ΠZQ
is a nonabelian free profinite group!] For any nonempty

subset Σ ⊆ Primes, write

ρΣZ : GK → Out(ΠΣ
ZQ

)

for the natural pro-Σ outer Galois representation [cf. Definition 2.1] — where
we write (−)Σ for the maximal pro-Σ quotient of (−). We are now ready to
state our main results [cf. Theorem 3.2; Corollary 3.5], which also concern the
noncommutativity of Out(Fr):

Theorem A. Let Σ ⊆ Primes be a subset such that either ♯Σ = 1 or ♯(Primes\
Σ) is finite [where we write ♯□ for the cardinality of □];

G ⊆ Out(ΠΣ
ZQ

)

a closed subgroup such that

• G contains an open subgroup of ρΣZ(GK);

• there exists a prime number l ∈ Σ such that the image of G via the natural
surjection [cf. [14], Proposition 4.5.4, (b)]

ϕl : Out(ΠΣ
ZQ

) ↠ Out(Π
{l}
ZQ

)

is slim — i.e., the center of every open subgroup of ϕl(G) is trivial.

Then G is strongly indecomposable — i.e., every open subgroup of G has no
nontrivial direct product decomposition.

Corollary B. Let m ≥ 2 be an integer; Σ ⊆ Primes a subset such that either
♯Σ = 1 or ♯(Primes \ Σ) is finite. Then Aut(FΣ

m) and Out(FΣ
m) are strongly

indecomposable.

We note that for arbitrary nonempty subset Σ ⊆ Primes, FΣ
m itself is strongly

indecomposable [cf. [12], Proposition 3.2]. It is not clear to the authors at the
time of writing whether or not the assumption on the cardinality of the subset
Σ ⊆ Primes in Theorem A and Corollary B can be dropped.

Finally, we remark that [in light of a well-known injectivity result of Belyi
— cf. [5], Theorem C — together with Remark 3.1.1], as other immediate
applications of Theorem A [in the case where one takes “Σ” (respectively, “Z”)
to be Primes (respectively, the projective line minus {0, 1,∞} over K)], one
obtains the following assertions:

(i) The [profinite] Grothendieck-Teichmüller group ĜT [cf. [3]; [11], Remark
1.11.1] is strongly indecomposable.

(ii) The absolute Galois groups of number fields are strongly indecomposable.

Assertion (i) gives an affirmative answer to an open problem posed in a first
author’s previous work [cf. [8]]. Assertion (ii) is a special case of the fact that
the absolute Galois groups of Hilbertian fields are strongly indecomposable —
which follows immediately from a theorem of Haran-Jarden [cf. [4], Corollary
2.5].
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Notations and conventions

Numbers: The notation Primes will be used to denote the set of all prime
numbers. The notation Q will be used to denote the field of rational numbers.
The notation Z will be used to denote the ring of integers. The notation Ẑ will
be used to denote the profinite completion of the underlying additive group of
Z. The notation Z≥1 will be used to denote the set of positive integers. We
shall refer to a finite extension field of Q as a number field. If p is a prime
number, then the notation Zp will be used to denote the ring of p-adic integers;
the notation Fp will be used to denote the finite field of cardinality p.

Let Σ ⊆ Primes be a nonempty subset. Then we shall say that an integer
n ∈ Z≥1 is a Σ-integer if either n = 1 or every prime factor of n is contained in
Σ.

Sets: Let S be a set. Then we shall write ♯S for the cardinality of S; Sym(S)

for the group of automorphisms of S; S3
def
= Sym({1, 2, 3}).

Rings: Let A be a commutative ring. Then we shall write char(A) for the
characteristic of A; A× for the group of units of A. Let F be a perfect field; F

an algebraic closure of F . Then we shall write GF
def
= Gal(F/F ).

Schemes: Let S be a scheme. Then we shall write Aut(S) for the group of
automorphisms of S. Let K be a field; K ⊆ L a field extension; S a scheme over

K. Then we shall write SL
def
= S×KL; AutK(S) for the group of automorphisms

of S over K; P1
K for the projective line over K.

Profinite groups: Let Σ ⊆ Primes be a nonempty subset; G a profinite
group. Then we shall write GΣ for the maximal pro-Σ quotient of G; Gab for
the abelianization of G [i.e., the quotient of G by the closure of the commutator
subgroup of G]; Aut(G) for the group of automorphisms of G [in the category
of profinite groups]; Inn(G) ⊆ Aut(G) for the group of inner automorphisms of

G; Out(G)
def
= Aut(G)/Inn(G). If p is a prime number, then we shall also write

Gp def
= G{p}; G(p)′ def

= GPrimes\{p}.
Suppose that G is topologically finitely generated. Then G admits a basis

of characteristic open subgroups [cf. [14], Proposition 2.5.1, (b)], which thus in-
duces a profinite topology on the groups Aut(G) and Out(G). Let H ⊆ G be a
closed subgroup. Write AutH(G) ⊆ Aut(G) for the subgroup of Aut(G) consist-
ing of elements that induce automorphisms of H; InnH(G) ⊆ AutH(G) for the
image of H via the natural surjection G ↠ Inn(G). Let J be a profinite group.
Then we shall refer to a continuous homomorphism J → AutH(G)/InnH(G) as
an H-outer action of J on G.

Fundamental groups: Let S be a connected locally Noetherian scheme. Then
we shall write ΠS for the étale fundamental group of S, relative to a suitable
choice of basepoint. [Note that, for any perfect field F , ΠSpec(F )

∼= GF .]

4



1 Preliminaries

In the present section, we recall some basic notions concerning profinite
groups and hyperbolic curves and prove certain auxiliary results [cf. Lemmas
1.3, 1.7] which will be applied in §3.

First, we recall basic notions concerning profinite groups.

Definition 1.1 ([12], Notations and Conventions; [12], Definition 3.1) Let G be
a profinite group; H ⊆ G a closed subgroup of G.

(i) We shall write ZG(H) for the centralizer of H in G, i.e., the closed sub-

group {g ∈ G | ghg−1 = h for any h ∈ H}; Z(G)
def
= ZG(G).

(ii) We shall say that G is slim if ZG(U) = {1} for every open subgroup U of
G [or, equivalently, Z(U) = {1} for every open subgroup U of G].

(iii) We shall say that G is decomposable if there exist nontrivial normal closed
subgroups H1 ⊆ G and H2 ⊆ G such that G = H1 × H2. We shall say
that G is indecomposable if G is not decomposable. We shall say that G is
strongly indecomposable if every open subgroup of G is indecomposable.

Remark 1.1.1 Let G be a slim profinite group. Then the following facts are
well-known [cf. [12], §0; [8], Lemma 1.6]:

(i) Every finite normal [closed] subgroup of G is trivial.

(ii) Let H ⊆ G be an open subgroup; α ∈ Aut(G) an element. Suppose
that α induces the identity automorphism on H. Then α is the identity
automorphism [on G].

Next, we prove a certain group-theoretic lemma which will be applied in §3.

Lemma 1.2. Let G be a profinite group; {Gi}i∈I a directed subset of the set of
characteristic open subgroups of G — where j ≥ i ⇔ Gj ⊆ Gi — such that∩

i∈I

Gi = {1}.

Write ϕi : Out(G)→ Out(G/Gi) for the natural homomorphism. Then∩
i∈I

Ker(ϕi) = {1}.

Proof. Let σ ∈
∩

i∈I Ker(ϕi) (⊆ Out(G)) be an element; σ̃ ∈ Aut(G) a lifting
of σ ∈ Out(G). For each i ∈ I, write σ̃i ∈ Aut(G/Gi) for the automorphism
induced by σ̃. Then since σ ∈ Ker(ϕi), it holds that σ̃i is an inner automorphism.
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Let γi ∈ G/Gi be an element which determines the inner automorphism σ̃i.
Write

Ci
def
= γi · Z(G/Gi) ⊆ G/Gi.

Here, we note that, if i1 ≥ i2 (i1, i2 ∈ I), then the natural surjection G/Gi1 ↠
G/Gi2 induces a map Ci1 → Ci2 . Observe that since Ci (i ∈ I) is a finite
nonempty set, the inverse limit lim←−i∈I

Ci is nonempty. Let

γ ∈ lim←−
i∈I

Ci (⊆ lim←−
i∈I

G/Gi = G)

[cf. [14], Corollary 1.1.6] be an element. Then it follows immediately from the
various definitions involved that σ̃ is an inner automorphism determined by γ.
This completes the proof of Lemma 1.2.

Lemma 1.3. Let G be a topologically finitely generated profinite group; S ⊆
Primes a finite subset. Then the natural homomorphism

Out(G) −→
∏

p∈Primes\S

Out(G(p)′)

is injective.

Proof. Since G is topologically finitely generated, there exists a directed subset
{Gi}i∈I of the set of characteristic open subgroups of G — where j ≥ i ⇔
Gj ⊆ Gi — such that ∩

i∈I

Gi = {1}

[cf. [14], Proposition 2.5.1, (b)]. Fix such a family. For each i ∈ I, let pi ∈
Primes \ S be such that pi does not divide the order of the finite group G/Gi.
Then the natural surjection G ↠ G/Gi factors through the natural surjection
G ↠ G(pi)

′
. Thus, Lemma 1.3 follows immediately from Lemma 1.2.

Next, we recall basic notions concerning hyperbolic curves.

Definition 1.4 Let k be a field; k an algebraic closure of k; X a smooth curve
[i.e., a one-dimensional, smooth, separated, of finite type, and geometrically
connected scheme] over k. Write Xk for the smooth compactification of Xk

over k. Then we shall say that X is a smooth curve of type (g, r) over k if the
genus of Xk is g, and the cardinality of the underlying set — we shall refer to
as a cusp of Xk any element of this set — of Xk \ Xk is r. If X is a smooth
curve of type (g, r) over k, and 2g − 2 + r > 0, then we shall say that X is a
hyperbolic curve over k.
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Definition 1.5 Let k be an algebraically closed field; Z a hyperbolic curve over
k; Q a profinite group; q : ΠZ ↠ Q an epimorphism [in the category of profinite
groups].

(i) Write Z for the smooth compactification of Z over k; K for the function

field of Z; K̃ for the maximal Galois extension of K, in a fixed separable

closure Ks, unramified over Z; Z̃ for the normalization of Z in K̃; S̃ for

the inverse image of S
def
= Z \Z in Z̃. [Note that we have a natural action

of ΠZ
∼= Gal(K̃/K) on Z̃.] Then for each point z ∈ S, we shall refer to as

a cuspidal inertia subgroup of ΠZ associated to z the stabilizer subgroup
⊆ ΠZ of a point ∈ S̃ lying over z; we shall refer to as a cuspidal inertia
subgroup of Q associated to z the image of a cuspidal inertia subgroup of
ΠZ associated to z via q.

(ii) Then we shall write

OutC(Q) ⊆ Out(Q) (respectively, Out|C|(Q) ⊆ Out(Q))

for the subgroup of outer automorphisms of Q that induce automorphisms
(respectively, the identity automorphism) on the set of the conjugacy
classes of cuspidal inertia subgroups of Q.

We conclude the present section with a useful lemma [which follows from
a similar argument to the argument applied in the proof of [17], Lemma 1.2]
concerning outer actions on certain quotients of ΠZ .

Definition 1.6 Let G be a profinite group; Π a topologically finitely generated
profinite group such that Z(Π) = {1}; G → Out(Π) a continuous homomor-
phism. Then we shall write

Π
out
⋊ G

for the profinite group obtained by pulling-back the continuous homomorphism
G→ Out(Π) via the natural surjection Aut(Π) ↠ Out(Π).

Lemma 1.7. In the notation of Definition 1.5, suppose that Q is topologically
finitely generated and slim. Let J ⊆ OutC(Q) be a closed subgroup; V ⊆ Q an
open subgroup. [In particular, q−1(V ) ⊆ ΠZ may be naturally identified with the
étale fundamental group of a hyperbolic curve over k.] Write ϕV : Aut(V ) ↠
Out(V ), ϕQ : Aut(Q) ↠ Out(Q) for the natural surjections. Then for any
sufficiently small open subgroup M ⊆ J , there exist an outer action of M on V

and an open injection V
out
⋊ M ↪→ Q

out
⋊ J such that

(a) the outer action of M preserves and induces automorphisms on the set of
the conjugacy classes of cuspidal inertia subgroups of V ;
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(b) the outer action of M on V extends uniquely [cf. the slimness of Q] to a
V -outer action on Q that is compatible with the outer action of J (⊇M)

on Q; the injection V
out
⋊ M ↪→ Q

out
⋊ J is the injection determined by the

inclusions V ⊆ Q and M ⊆ J and the V -outer actions on V and Q.

Proof. Write n ∈ Z≥1 for the index of V in Q;

Aut[V ](Q) ⊆ Aut(Q)

for the subgroup of Aut(Q) consisting of elements that induce automorphisms
of V , and, moreover, induce automorphisms on the set of the conjugacy classes
of cuspidal inertia subgroups of V . First, we note that since InnV (Q) is an
open subgroup of Inn(Q) [cf. our assumption that V is an open subgroup of Q],
there exists an open subgroup M1 ⊆ Aut(Q) such that M1∩ Inn(Q) = InnV (Q).
Next, we consider the set

Qn
def
= {all open subgroups of Q of index n}.

Then since Qn is a finite set [cf. our assumption that Q is topologically finitely
generated; [14], Proposition 2.5.1, (a)], the kernel — which we denote by M2 —
of the natural homomorphism

Aut(Q)→ Sym(Qn)

is an open subgroup of Aut(Q). In particular, it follows immediately from the
various definitions involved that

MAut
def
= M1 ∩M2 ∩ ϕ−1

Q (J) (⊆ Aut(Q))

is an open subgroup of ϕ−1
Q (J) satisfying the following conditions:

(i) MAut ∩ Inn(Q) ⊆ InnV (Q);

(ii) MAut ⊆ Aut[V ](Q).

Write

MV
def
= Im(MAut

(ii)
↪→ Aut[V ](Q)→ Aut(V )

ϕV↠ Out(V ));

M
def
= Im(MAut ↪→ Aut[V ](Q) ↪→ Aut(Q)

ϕQ↠ Out(Q));

MV,Aut
def
= Im(MAut ↪→ Aut[V ](Q) ↠ Aut[V ](Q)/InnV (Q)).

Then we have a commutative diagram of profinite groups

(⋆)

Aut(V ) ←−−−− Aut[V ](Q) −−−−→ Aut(Q)yϕV

y yϕQ

Out(V ) ←−−−− Aut[V ](Q)/InnV (Q) −−−−→ Out(Q)x x x
MV ←−−−− MV,Aut −−−−→ M.
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— where the horizontal arrows in the third line are surjective [cf. the definitions
of MV , M , MV,Aut]. Now we verify the following assertion:

Claim 1.7.A: The horizontal arrows in the third line of the diagram
(⋆) are bijective.

Indeed, it follows immediately from the commutativity of the diagram

1 −−−−→ V −−−−→ Aut(V ) −−−−→ Out(V ) −−−−→ 1∥∥∥ x x
1 −−−−→ V −−−−→ Aut[V ](Q) −−−−→ Aut[V ](Q)/InnV (Q) −−−−→ 1,

together with the injectivity of Aut[V ](Q) → Aut(V ) [cf. our assumption that

Q is slim; Remark 1.1.1], that Aut[V ](Q)/InnV (Q)→ Out(V ) is injective, hence
that MV,Aut → MV is bijective. The injectivity of MV,Aut → M follows imme-
diately from the above condition (i). This completes the proof of Claim 1.7.A.
In light of Claim 1.7.A, the assertions of Lemma 1.7 follow formally.

2 Computations of various Galois centralizers

In the present section, by applying highly nontrivial “Grothendieck Conjecture-
type results” [cf. [9], Theorem A; [15], Theorem D] in anabelian geometry, we
compute various Galois centralizers. These computations will be applied in §3.

Definition 2.1 Let k be a field; k an algebraic closure of k; Z a hyperbolic curve
over k. Then we have an exact sequence of profinite groups

1 −→ ΠZk
−→ ΠZ −→ Gk −→ 1.

We shall write ρZ : Gk → Out(ΠZk
) for the outer representation determined

by the above exact sequence. Let Σ ⊆ Primes be a nonempty subset. Then we
shall write

ρΣZ : Gk → Out(ΠΣ
Zk

)

for the outer representation induced by ρZ ;

Π
[Σ]
Z

def
= ΠZ/Ker(ΠZk

↠ ΠΣ
Zk

).

Let p be a prime number. If Σ = {p}, then we shall also write ρpZ
def
= ρΣZ .
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Lemma 2.2. Let l be a prime number; Σ ⊆ Primes a subset such that l ∈ Σ;
n ∈ Z≥1 a Σ-integer; K ⊆ Q a number field; Z ⊆ P1

K\{0, 1,∞} an open
subscheme obtained by forming the complement of a finite subset of K-rational
points of P1

K\{0, 1,∞}. [In particular, Z is a hyperbolic curve of genus 0 over
K.] Write (P1

Q ⊇) YQ → ZQ (⊆ P1
Q) for the finite étale Galois covering of ZQ

of degree n determined by t 7→ tn;

Q
def
= ΠΣ

ZQ
/Ker(ΠΣ

YQ
↠ Πl

YQ
).

Then the following hold:

(i) We have a natural homomorphism

Out|C|(ΠΣ
ZQ

)→ Out|C|(Q).

(ii) Write ρ for the composite of natural homomorphisms

GK
ρΣ
Z→ Out|C|(ΠΣ

ZQ
)→ Out|C|(Q)

[cf. our assumption that all cusps of Z are K-rational]. Then it holds that

ZOut|C|(Q)(Im(ρ)) = {1}.

(iii) Let

G ⊆ Out|C|(Q)

be a closed subgroup such that G contains an open subgroup of Im(ρ). Then
G is slim.

Proof. We begin by observing that

the normal open subgroup ΠΣ
YQ
⊆ ΠΣ

ZQ
[determined by the finite étale

Galois covering YQ → ZQ] may be characterized as the normal open
subgroup topologically generated by the cuspidal inertia subgroups
of ΠΣ

ZQ
that is not associated to the cusps 0, ∞, and the [unique]

closed subgroups of the cuspidal inertia subgroups of ΠΣ
ZQ

associated

to the cusps 0, ∞, of index n.

Then assertion (i) follows immediately from this observation, together with the
various definitions involved.

Next, we verify assertion (ii). Let σ ∈ ZOut|C|(Q)(Im(ρ)) be an element. Then
it follows immediately from the above observation that any lifting ∈ Aut(Q) of
σ induces an automorphism of Πl

YQ
. Let σ̃ ∈ Aut(Q) be a lifting of σ such that

the automorphism σ̃|Πl
YQ
∈ Aut(Πl

YQ
) induced by σ̃ preserves the Πl

YQ
-conjugacy

class of cuspidal inertia subgroups of Πl
YQ

associated to the cusp 1. Here, we note

that since σ̃ preserves the Q-conjugacy class of cuspidal inertia subgroups of Q

10



associated to the cusp 0 (respectively, ∞), and the finite étale Galois covering
YQ → ZQ is totally ramified over the cusp 0 (respectively, ∞), it holds that

σ̃|Πl
YQ

preserves the Πl
YQ
-conjugacy class of cuspidal inertia subgroups of Πl

YQ

associated to the cusp 0 (respectively, ∞). Write

σY : Πl
YQ

∼→ Πl
YQ

for the outer automorphism determined by σ̃|Πl
YQ
∈ Aut(Πl

YQ
). Observe that

since the outer action of GK , together with σY , on Πl
YQ

preserves the Πl
YQ
-

conjugacy class of cuspidal inertia subgroups of Πl
YQ

associated to the cusp 1, it

follows from our assumption that σ ∈ ZOut|C|(Q)(Im(ρ)) that σY commutes with

the outer action of GK on Πl
YQ
. Then it follows from the Grothendieck Conjec-

ture [cf. [9], Theorem A] that σY arises from a unique isomorphism f : YQ
∼→ YQ

of schemes over Q. Note that since σ̃|Πl
YQ

induces the identity automorphism on

the set of the Πl
YQ
-conjugacy classes of cuspidal inertia subgroups of Πl

YQ
asso-

ciated to the cusps 0, 1, ∞, it holds that f induces the identity automorphism
on the subset {0, 1,∞} ⊆ P1

Q. In particular, we conclude that f is the identity

automorphism, hence that σY is the identity outer automorphism. Recall that
the automorphism σ̃|Πl

YQ
∈ Aut(Πl

YQ
) is the restriction of σ̃ ∈ Aut(Q). Thus,

since Q is slim [cf. [12], Proposition 1.4], it follows from Remark 1.1.1, that σ̃ is
an inner automorphism, hence that σ is the identity outer automorphism. This
completes the proof of assertion (ii).

Finally, we verify assertion (iii). Since every open subgroup of G contains
an open subgroup of Im(ρ), to verify assertion (iii), it suffices to show that
Z(G) = {1}. But this follows immediately from assertion (ii). This completes
the proof of assertion (iii), hence of Lemma 2.2.

The following notion plays important roles in the present paper.

Definition 2.3 Let l be a prime number. We shall say that a profinite group G
is almost Zl if there exists an open subgroup H ⊆ G such that H is isomorphic
to Zl.

Lemma 2.4. Let p be a prime number; Σ ⊆ Primes a nonempty subset such
that p ̸∈ Σ; k a finite field of characteristic p. In the notation of Definition 2.1,
suppose that Z is a hyperbolic curve of genus 0 over k such that all cusps of Z

are k-rational. Write ρ
def
= ρΣZ . Then the following hold:

(i) Suppose that ♯(Primes \ Σ) is finite. Then the natural homomorphism
Aut(Zk)→ Out(ΠΣ

Zk
) determines an isomorphism

Aut(Zk)
∼→ ZOut(ΠΣ

Z
k
)(ρ(Gk)).
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(ii) Suppose that either ♯Σ = 1 or ♯(Primes \ Σ) is finite. Then, if we write

χΣ : Out|C|(ΠΣ
Zk

) → (ẐΣ)× for the pro-Σ cyclotomic character [which is
obtained by considering the actions on the cuspidal inertia subgroups of
ΠΣ

Zk
], then the natural composite

ZOut|C|(ΠΣ
Z
k
)(ρ(Gk)) ⊆ Out|C|(ΠΣ

Zk
)

χΣ−→ (ẐΣ)×

is injective.

(iii) Let l be a prime number ̸= p. Then ZOut(Πl
Z
k
)(ρ(Gk)) is almost Zl.

Proof. First, we verify assertion (i). Write OutGk
(Π

[Σ]
Z ) for the group of ΠΣ

Zk
-

outer automorphisms of Π
[Σ]
Z that lie over Gk [cf. Definition 2.1]. Then since

ΠΣ
Zk

is center-free [cf. [12], Proposition 1.4], it is well-known that the natural
homomorphism

OutGk
(Π

[Σ]
Z )→ ZOut(ΠΣ

Z
k
)(ρ(Gk))

is an isomorphism [cf. [16], Lemma 7.1]. On the other hand, since Gk is abelian,
it follows immediately from [15], Theorem D, together with the definition of

OutGk
(Π

[Σ]
Z ), that

Aut(Zk/Z)
∼→ OutGk

(Π
[Σ]
Z ),

where Aut(Zk/Z) ⊆ Aut(Zk) denotes the subgroup consisting of automorphisms
of Zk that induce automorphisms of Z compatible with the natural morphism
Zk → Z.

Next, we verify the following assertion:

Claim 2.4.A: The inclusion Aut(Zk/Z) ⊆ Aut(Zk) is bijective.

Indeed, let α ∈ Aut(Zk) be an element; σ ∈ Gk (↪→ Aut(Zk)). Then since Gk

is abelian, it follows that

γ
def
= σ ◦ α ◦ σ−1 ◦ α−1 ∈ Autk(Zk).

Next, we note that γ induces the identity automorphism on the set of cusps of
Zk. Thus, we conclude that γ = 1, hence that α induces a unique automorphism
∈ Aut(Z) compatible with the natural morphism Zk → Z. This completes the
proof of Claim 2.4.A.

Thus, by applying Claim 2.4.A, we obtain a natural isomorphism

ϕ : Aut(Zk)
∼→ ZOut(ΠΣ

Z
k
)(ρ(Gk)).

This completes the proof of assertion (i).
Next, we verify assertion (ii). If ♯Σ = 1, then the desired conclusion follows

immediately from the latter half of the proof of [13], Proposition 2.2.4. Thus,
we may assume without loss of generality that ♯(Primes \ Σ) is finite. Write

12



Aut|C|(Zk) ⊆ Aut(Zk) for the subgroup of automorphisms of Zk that induce the
identity automorphisms on the set of cusps of Zk. Then ϕ induces a composite

Aut|C|(Zk)
∼→ ZOut|C|(ΠΣ

Z
k
)(ρ(Gk)) ⊆ Out|C|(ΠΣ

Zk
)

χΣ−→ (ẐΣ)×.

Observe that this composite factors as the composite of the natural injection
Aut|C|(Zk) ↪→ GFp

with the pro-Σ cyclotomic character GFp
→ (ẐΣ)× [which is

injective — cf. [2], Théorème 1]. Thus, we conclude that the natural composite

ZOut|C|(ΠΣ
Z
k
)(ρ(Gk)) ⊆ Out|C|(ΠΣ

Zk
)

χΣ−→ (ẐΣ)×

is injective. This completes the proof of assertion (ii).
Finally, we verify assertion (iii). We begin by observing that since the image

of the l-adic cyclotomic character Gk → Z×
l is infinite, it follows from [10],

Corollary 2.7, (i), that

ZOut(Πl
Z
k
)(ρ(Gk)) = ZOutC(Πl

Z
k
)(ρ(Gk)).

Moreover, we observe that since Out|C|(Πl
Zk

) is open in OutC(Πl
Zk

), it holds that

ZOut|C|(Πl
Z
k
)(ρ(Gk)) is open in ZOutC(Πl

Z
k
)(ρ(Gk)). Thus, to verify assertion (iii),

it suffices to show that ZOut|C|(Πl
Z
k
)(ρ(Gk)) is almost Zl. On the other hand,

since ρ(Gk) is an infinite abelian group [cf. [8], Lemma 4.2, (iv)], we conclude
immediately from assertion (ii) that ZOut|C|(Πl

Z
k
)(ρ(Gk)) is almost Zl, as desired.

This completes the proof of assertion (iii), hence of Lemma 2.4.

Remark 2.4.1 It is natural to pose the following question:

Question: In the notation of Lemma 2.4, (i), (ii), can the assump-
tions on the cardinality of the subset Σ ⊆ Primes be dropped?

However, at the time of writing the present paper, the authors do not know
whether the answer to this question is affirmative or not.

Lemma 2.5. Let l be a prime number; K ⊆ Q a number field. In the notation
of Definition 2.1, suppose that k = K, and Z is a hyperbolic curve over K.
Then every open subgroup U ⊆ Im(ρlZ) is nonabelian.

Proof. Let us recall that, since the image of the l-adic cyclotomic character
GK → Z×

l is infinite, it holds that Im(ρlZ) is infinite [cf. [8], Lemma 4.2, (iv)],
hence that U is infinite. Write K ′ ⊆ Q for the finite extension of K determined
by U . Suppose that U is abelian. Then since U ⊆ ZOut(Πl

ZQ
)(U), the centralizer

ZOut(Πl
ZQ

)(U) is infinite. However, since AutK′(ZK′) is finite, this contradicts

the Grothendieck Conjecture for hyperbolic curves over number fields [cf. [9],
Theorem A]. Thus, we conclude that U is nonabelian. This completes the proof
of Lemma 2.5.

13



3 Strong indecomposability of the outer auto-
morphism groups of nonabelian free profinite
groups

In the present section, by applying the results obtained in §2, §3, we prove
the main results [cf. Theorem 3.2; Corollary 3.5] of the present paper.

Lemma 3.1. Let Σ ⊆ Primes be a nonempty subset; K ⊆ Q a number field. In
the notation of Definition 2.1, suppose that k = K, and Z is a hyperbolic curve
of genus 0 over K. Let

G ⊆ Out(ΠΣ
ZQ

)

be a closed subgroup such that

• G contains an open subgroup of ρΣZ(GK);

• there exists a prime number l ∈ Σ such that the image of G via the natural
surjection [cf. [14], Proposition 4.5.4, (b)]

ϕl : Out(ΠΣ
ZQ

) ↠ Out(Πl
ZQ

)

is slim;

• there exist normal closed subgroups G1 ⊆ G and G2 ⊆ G such that G =
G1 ×G2.

Then

(a) ϕl(G1) = {1} and G1 ⊆ Out|C|(ΠΣ
ZQ

), or

(b) ϕl(G2) = {1} and G2 ⊆ Out|C|(ΠΣ
ZQ

)

holds.

Proof. First, by replacing K by a finite extension of K, we may assume without
loss of generality that ρΣZ(GK) ⊆ G, and all cusps of Z are K-rational. Let p
be a maximal ideal of the ring of integers of K such that

• the characteristic of the residue field at p is not equal to l, and

• Z has good reduction at p;

F ∈ GK a lifting of the Frobenius element at p. We shall write,

• for each i = 1, 2, pri : G ↠ Gi for the natural projection;

• J ⊆ GK for the closed subgroup topologically generated by F , where we
note that J is isomorphic to Ẑ;

14



• I
def
= ρΣZ(J) ⊆ G;

• I1
def
= pr1(I)× {1} ⊆ G1 ×G2 = G, I2

def
= {1} × pr2(I) ⊆ G1 ×G2 = G.

Here, we note that, since I is abelian, it holds that

I ⊆ I1 × I2 ⊆ ZG(I),

hence that

ϕl(I) ⊆ ϕl(I1) · ϕl(I2) ⊆ Zϕl(G)(ϕl(I)) ⊆ ZOut(Πl
ZQ

)(ϕl(I)).

Moreover, we note that since Z has good reduction at p, it follows immediately
from the theory of specialization isomorphism, that

• ZOut(Πl
ZQ

)(ϕl(I)) is almost Zl [cf. Lemma 2.4, (iii)], and

• ϕl(I) is infinite [cf. [8], Lemma 4.2, (iv)].

In particular, it holds that ϕl(I1) is infinite, or ϕl(I2) is infinite. We may assume
without loss of generality that

ϕl(I2) is infinite.

Observe that since ZOut(Πl
ZQ

)(ϕl(I)) is almost Zl, it holds that ϕl(I2) ∩ ϕl(I) ⊆
ϕl(I) is an open subgroup. Then since G1 ⊆ ZG(I2), there exists an open
subgroup †I ⊆ I such that

ϕl(G1) ⊆ ZOut(Πl
ZQ

)(ϕl(
†I)).

Now suppose that ϕl(G1) is infinite. Then since ϕl(I) ⊆ ZOut(Πl
ZQ

)(ϕl(
†I)),

and, moreover, ZOut(Πl
ZQ

)(ϕl(
†I)) is almost Zl [cf. Lemma 2.4, (iii)], it holds

that ϕl(G1) ∩ ϕl(I) ⊆ ϕl(I) is an open subgroup. On the other hand, since
G2 ⊆ ZG(G1), there exists an open subgroup ‡I ⊆ †I (⊆ I) such that

ϕl(G2) ⊆ ZOut(Πl
ZQ

)(ϕl(
‡I)).

In summary, we have

ρlZ(GK) = ϕl(ρ
Σ
Z(GK)) ⊆ ϕl(G) = ϕl(G1) · ϕl(G2) ⊆ ZOut(Πl

ZQ
)(ϕl(

‡I)).

Then since ZOut(Πl
ZQ

)(ϕl(
‡I)) is almost Zl [cf. Lemma 2.4, (iii)], it follows that

there exists an open subgroup U ⊆ ρlZ(GK) such that U is abelian, a contradic-
tion [cf. Lemma 2.5]. Thus, we conclude that ϕl(G1) is finite. Therefore, since
ϕl(G1) ⊆ ϕl(G) is a finite normal subgroup, it follows from our assumption that
ϕl(G) is slim that ϕl(G1) = {1} [cf. Remark 1.1.1].
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Finally, we verify the inclusionG1 ⊆ Out|C|(ΠΣ
ZQ

). Write χl : Out|C|(ΠΣ
ZQ

)→
Z×
l for the l-adic cyclotomic character [which is obtained by considering the

actions on the cuspidal inertia subgroups of ΠΣ
ZQ

]. Then since χl(I) is infinite,

it follows from [10], Corollary 2.7, (i), that

I1 × I2 ⊆ ZOut(ΠΣ
ZQ

)(I) ⊆ OutC(ΠΣ
ZQ

).

In particular, since ϕl(I1) ⊆ ϕl(G1) = {1}, we have I1 ⊆ Out|C|(ΠΣ
ZQ

) [cf. [10],

Proposition 1.2, (i)]. Thus, we obtain an inclusion

I ⊆ I1 × I
|C|
2 (⊆ Out|C|(ΠΣ

ZQ
)),

where we write I
|C|
2

def
= I2 ∩Out|C|(ΠΣ

ZQ
). Here, we observe that since χl factors

through [the restriction of] ϕl [on Out|C|(ΠΣ
ZQ

)], it holds that

χl(I) ⊆ χl(I
|C|
2 ) (⊆ Z×

l ),

hence that χl(I
|C|
2 ) is infinite. Therefore, we conclude from [10], Corollary 2.7,

(i), that

G1 ⊆ ZOut(ΠΣ
ZQ

)(I
|C|
2 ) ⊆ OutC(ΠΣ

ZQ
).

In particular, since ϕl(G1) = {1}, we have G1 ⊆ Out|C|(ΠΣ
ZQ

) [cf. [10], Proposi-

tion 1.2, (i)]. This completes the proof of Lemma 3.1.

Remark 3.1.1 In the notation of Lemma 3.1, suppose that

G ⊆ Out|C|(ΠΣ
ZQ

).

Then the second assumption on G [concerning the slimness of ϕl(G)] follows
automatically from the first assumption on G. Indeed, to verify the slimness of
ϕl(G), by replacing K by a finite extension of K, we may assume without loss
of generality that Z is an open subscheme of P1

K\{0, 1,∞} obtained by forming
the complement of a finite subset of K-rational points of P1

K\{0, 1,∞}. Then
the slimness of ϕl(G) follows immediately from Lemma 2.2, (iii).

Theorem 3.2. Let Σ ⊆ Primes be a subset such that either ♯Σ = 1 or ♯(Primes\
Σ) is finite; K ⊆ Q a number field. In the notation of Definition 2.1, suppose
that k = K, and Z is a hyperbolic curve of genus 0 over K. Let

G ⊆ Out(ΠΣ
ZQ

)

be a closed subgroup such that
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• G contains an open subgroup of ρΣZ(GK);

• there exists a prime number l ∈ Σ such that the image of G via the natural
surjection [cf. [14], Proposition 4.5.4, (b)]

ϕl : Out(ΠΣ
ZQ

) ↠ Out(Πl
ZQ

)

is slim.

Then G is strongly indecomposable.

Proof. We begin by observing that every open subgroup Γ of G contains an
open subgroup of ρΣZ(GK), and, moreover, ϕl(Γ) is slim. In particular, to verify
Theorem 3.2, it suffices to prove that G is indecomposable. If ♯Σ = 1, then the
indecomposability of G follows immediately from Lemma 3.1. Thus, we may
assume without loss of generality that

♯(Primes \ Σ) is finite.

Next, by replacing K by a finite extension of K, we may assume without loss
of generality that ρΣZ(GK) ⊆ G, and all cusps of Z are K-rational. More-
over, we may assume without loss of generality that Z is an open subscheme
of P1

K\{0, 1,∞} obtained by forming the complement of a finite subset of K-
rational points of P1

K\{0, 1,∞}.
Suppose that there exist normal closed subgroups G1 ⊆ G and G2 ⊆ G such

that
G = G1 ×G2.

We shall write,

• for each Σ-integer n ∈ Z≥1, (P1
Q ⊇)

nYQ → ZQ (⊆ P1
Q) for the finite étale

Galois covering of ZQ of degree n determined by t 7→ tn;

• Qn,l
def
= ΠΣ

ZQ
/Ker(ΠΣ

nYQ
↠ Πl

nYQ
);

• ϕn,l : Out|C|(ΠΣ
ZQ

) → Out|C|(Qn,l) for the natural homomorphism [cf.

Lemma 2.2, (i)].

Note that 1YQ = ZQ, and Q1,l = Πl
ZQ

.

Next, let us observe that, by applying Lemma 3.1, we may asuume without
loss of generality that

ϕl(G1) = {1} and G1 ⊆ Out|C|(ΠΣ
ZQ

).

In particular, we have a direct product decomposition

G|C| = G1 ×G
|C|
2 (⊆ Out|C|(ΠΣ

ZQ
)),

where we write G|C| def
= G ∩Out|C|(ΠΣ

ZQ
); G

|C|
2

def
= G2 ∩Out|C|(ΠΣ

ZQ
).

Next, we verify the following assertion:
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Claim 3.2.A: For any Σ-integer n ∈ Z≥1, it holds that ϕn,l(G1) =
{1}.

Indeed, let H ⊆ G|C|, H1 ⊆ G1, and H2 ⊆ G
|C|
2 be normal open subgroups such

that

• H = H1 ×H2;

• there exists an injection H ↪→ Out|C|(ΠΣ
nYQ

);

• there exists an injection ΠnYQ

out
⋊ H ↪→ ΠZQ

out
⋊ G|C| [cf. [12], Proposition

1.4] that is compatible with the inclusions between respective subgroups
ΠΣ

nYQ
⊆ ΠΣ

ZQ
and quotients H ⊆ G|C|

[cf. Lemma 1.7]. Then it follows immediately from Lemma 3.1; Remark 3.1.1,
together with [12], Proposition 1.4, that ϕn,l(H1) = {1} or ϕn,l(H2) = {1}.
Suppose that ϕn,l(H2) = {1}. Here, we note that since Ql

n,l
∼→ Πl

ZQ
, it

holds that ϕl factors as the composite of ϕn,l with the natural homomor-

phism Out|C|(Qn,l) → Out|C|(Πl
ZQ

). In particular, ϕl(H2) = {1}. Then our

assumption that ϕl(G1) = {1} implies that ϕl(G1 × H2) = {1}, hence that
ϕl(ρ

Σ
Z(GK)) (⊆ ϕl(G)) is finite. This is a contradiction [cf. [8], Lemma 4.2,

(iv)]. Thus, we conclude that ϕn,l(H1) = {1}, hence that ϕn,l(G1) is finite.
Therefore, since ϕn,l(G1) ⊆ ϕn,l(G) is a finite normal subgroup, it follows from
the slimness of ϕn,l(G) [cf. Lemma 2.2, (iii)] that ϕn,l(G1) = {1} [cf. Remark
1.1.1]. This completes the proof of Claim 3.2.A.

Write χΣ : Out|C|(ΠΣ
ZQ

)→ (ẐΣ)× for the pro-Σ cyclotomic character [which

is obtained by considering the actions on the cuspidal inertia subgroups of ΠΣ
ZQ

].

Then it follows immediately from Claim 3.2.A that

χΣ(G1) = {1}.

For each p ∈ Σ, write

ϕ(p)′ : Out(ΠΣ
ZQ

) ↠ Out(Π
Σ\{p}
ZQ

)

for the natural surjection.
Next, we verify the following assertion:

Claim 3.2.B: There exists a finite subset S ⊆ Σ such that, for each
p ∈ Σ \ S, it holds that ϕ(p)′(G1) = {1}.

Indeed, let p be a maximal ideal of the ring of integers of K such that

• the characteristic — which we denote by p — of the residue field at p is
contained in Σ, and

• Z has good reduction at p;
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F ∈ GK a lifting of the Frobenius element at p. We shall write,

• for each i = 1, 2, pri : G ↠ Gi for the natural projection;

• J ⊆ GK for the closed subgroup topologically generated by F , where we
note that J is isomorphic to Ẑ;

• I
def
= ρΣZ(J) ⊆ G|C|;

• I1
def
= pr1(I)× {1} ⊆ G1 ×G

|C|
2 = G|C|, I2

def
= {1} × pr2(I) ⊆ G1 ×G

|C|
2 =

G|C|.

Then since I is abelian, it holds that

I ⊆ I1 × I2 ⊆ ZG|C|(I).

Then it follows immediately from Lemma 2.4, (ii), together with the theory of
specialization isomorphism, that our assumption that χΣ(I1) ⊆ χΣ(G1) = {1}
implies that ϕ(p)′(I1) = {1}. In particular, ϕ(p)′(I) ⊆ ϕ(p)′(I2). Thus, since
χΣ(G1) = {1}, and G1 ⊆ ZG(I2), we conclude from Lemma 2.4, (ii), together
with the theory of specialization isomorphism, that ϕ(p)′(G1) = {1}. Observe
that there exists a finite subset S ⊆ Σ such that Z has good reduction at any
maximal ideal of the ring of integers of K that lies over a prime number ∈ Σ\S.
Therefore, we obtain the desired conclusion. This completes the proof of Claim
3.2.B.

Finally, if we write Σ′ def
= Primes \ Σ, then, in light of the injectivity of the

composite

Out(ΠΣ
ZQ

)→
∏

p∈Primes\(Σ′∪S)

Out((ΠΣ
ZQ

)(p)
′
)

∼→
∏

p∈Σ\S

Out(Π
Σ\{p}
ZQ

)

[cf. Lemma 1.3; the fact that ♯(Σ′ ∪ S) is finite], we conclude from Claim 3.2.B
that G1 = {1}, hence that G is indecomposable. This completes the proof of
Theorem 3.2.

Remark 3.2.1 It is natural to pose the following question:

Question: In the notation of Theorem 3.2, can the assumption on
the cardinality of the subset Σ ⊆ Primes be dropped?

However, at the time of writing the present paper, the authors do not know
whether the answer to this question is affirmative or not.

Corollary 3.3. In the notation of Theorem 3.2, suppose that G is slim. Then

ΠΣ
ZQ

out
⋊ G is strongly indecomposable.

19



Proof. First, since ΠΣ
ZQ

is center-free [cf. [12], Proposition 1.4], we have an exact

sequence of profinite groups

1 −→ ΠΣ
ZQ
−→ ΠZQ

out
⋊ G −→ G −→ 1.

Thus, since G is infinite, we conclude from Theorem 3.2, together with [8],

Proposition 1.8, (i); [12], Proposition 1.4; [12], Proposition 3.2, that ΠΣ
ZQ

out
⋊ G

is strongly indecomposable. This completes the proof of Corollary 3.3.

Lemma 3.4. Let m ≥ 2 be an integer; Σ ⊆ Primes a nonempty subset; Fm a
free profinite group of rank m. Then Out(FΣ

m) is slim.

Proof. First, we consider the case where m = 2. In this case, we claim the
following assertion:

Claim 3.4.A: There exists a closed subgroup H1 ⊆ Out(FΣ
m) (respec-

tively, H2 ⊆ Out(FΣ
m)) such that for every open subgroup H ′

1 ⊆ H1

(respectively, H ′
2 ⊆ H2), it holds that

ZOut(FΣ
m)(H

′
1)
∼= S3 (respectively, ZOut(FΣ

m)(H
′
2)
∼= Z/2Z).

Indeed, write C1 for the projective line minus {0, 1,∞} over a number field
K1 ⊆ Q. Let (E, {o}) be an elliptic curve [where o is the origin of E] over a
number field K2 ⊆ Q such that the j-invariant of (E, {o}) is not equal to 0
or 1728. Write C2 for the hyperbolic curve over K2 obtained by removing {o}
from E. In particular, [as is well-known] for any finite extension K1 ⊆ L1 (⊆ Q)
(respectively, K2 ⊆ L2 (⊆ Q)), we have

AutL1((C1)L1)
∼= S3 (respectively, AutL2((C2)L2)

∼= Z/2Z).

Thus, since [by applying the Grothendieck Conjecture for hyperbolic curves over
number fields — cf. [9], Theorem A] we have a natural isomorphism

AutL1
((C1)L1

)
∼→ ZOut(ΠΣ

(C1)Q
)(ρ

Σ
C1

(GL1
))

(respectively, AutL2
((C2)L2

)
∼→ ZOut(ΠΣ

(C2)Q
)(ρ

Σ
C2

(GL2
))),

we conclude that the image of ρΣC1
(GK1) (respectively, ρΣC2

(GK2)) via any iso-

morphism Out(ΠΣ
(C1)Q

)
∼→ Out(FΣ

m) (respectively, Out(ΠΣ
(C2)Q

)
∼→ Out(FΣ

m))

determines the desired subgroup. This completes the proof of Claim 3.4.A.
Let us recall that to verify Lemma 3.4, it suffices to show that for every

normal open subgroup N ⊆ Out(FΣ
m), we have

ZOut(FΣ
m)(N) = {1}.
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Now suppose that ZOut(FΣ
m)(N) ̸= {1}. Then since

ZOut(FΣ
m)(N) ⊆ ZOut(FΣ

m)(H1 ∩N) ∩ ZOut(FΣ
m)(H2 ∩N)

⊆ ZOut(FΣ
m)(H2 ∩N) ∼= Z/2Z

[cf. Claim 3.4A], we have

ZOut(FΣ
m)(N) = ZOut(FΣ

m)(H1 ∩N) ∩ ZOut(FΣ
m)(H2 ∩N)

= ZOut(FΣ
m)(H2 ∩N) ∼= Z/2Z.

Thus, since ZOut(FΣ
m)(N) is normal in Out(FΣ

m) [cf. our assumption that N is

normal in Out(FΣ
m)], we conclude that ZOut(FΣ

m)(H1 ∩ N) (∼= S3) [cf. Claim
3.4A] admits a normal subgroup of order 2, a contradiction. Therefore, we have
ZOut(FΣ

m)(N) = {1}. This completes the proof of Lemma 3.4 in the case where
m = 2.

Next, we consider the case where m = 3. In this case, we claim the following
assertion:

Claim 3.4.B: There exists a closed subgroup H1 ⊆ Out(FΣ
m) (respec-

tively, H2 ⊆ Out(FΣ
m)) satisfying the following conditions:

• For every open subgroup H ′
1 ⊆ H1 (respectively, H ′

2 ⊆ H2), it
holds that

ZOut(FΣ
m)(H

′
1)
∼= Z/2Z× Z/2Z

(respectively, ZOut(FΣ
m)(H

′
2)
∼= Z/2Z).

• For any l ∈ Σ, every nontrivial element α1 ∈ ZOut(FΣ
m)(H

′
1) (re-

spectively, the [unique] nontrivial element α2 ∈ ZOut(FΣ
m)(H

′
2))

induces a Zl-automorphism α1 (respectively, α2) of

(F l
m)ab

such that the rank of the Zl-submodule ⊆ (F l
m)ab consisting of

elements ∈ (F l
m)ab fixed by α1 (respectively, α2) is 1 (respec-

tively, 0).

Indeed, write C1 for the projective line minus {0, 1, 3,∞} over a number field
K1 ⊆ Q. Let (E, {o}) be an elliptic curve over a number field K2 ⊆ Q such
that the j-invariant of (E, {o}) is not equal to 0 or 1728, and that E has a
non-4-torsion K2-rational point x. Write C2 for the hyperbolic curve over K2

obtained by removing {x,−x} from E. In particular, [as is easily verified] for
any finite extension K1 ⊆ L1 (⊆ Q) (respectively, K2 ⊆ L2 (⊆ Q)), we have

AutL1((C1)L1)
∼= Z/2Z× Z/2Z (respectively, AutL2((C2)L2)

∼= Z/2Z)

[cf. the fact that the Q-automorphism “[−1]” of EQ [of order 2] preserves the set
{x,−x}; the fact that if a nontrivial element f ∈ AutQ(EQ) satisfies f(x) = x,
then f coincides with the map

z 7→ 2x− z
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on the set of Q-rational points of EQ, so f(−x) ̸= −x].
Let α1 be a nontrivial element ∈ AutL1((C1)L1) that induces an automor-

phism s ∈ Sym({0, 1, 3,∞}) of the set of cusps {0, 1, 3,∞}. [Here, we note
that s may be written as the product of the transposition of two distinct el-
ements ∈ {0, 1, 3,∞} and the transposition of the other two distinct elements
∈ {0, 1, 3,∞}.] Write α2 for the [unique] nontrivial element ∈ AutL2

((C2)L2
).

Then it follows from the well-known structure of the étale fundamental group
of a smooth curve over an algebraically closed field of characteristic 0 that if we
identify (Πl

(C1)Q
)ab (respectively, (Πl

(C2)Q
)ab) with the [free] Zl-module

(⟨a0, a1, a3, a∞ | a0 + a1 + a3 + a∞ = 0⟩l)ab

(respectively, (⟨b, c, dx, d−x | dx + d−x = 0⟩l)ab)

— where we write (−)l for the pro-l completion of (−); a◦ (respectively, d◦)
corresponds to the cusp ◦ ∈ {0, 1, 3,∞} (respectively, ◦ ∈ {x,−x}); b corre-
sponds to a meridian of the “complex torus E(C)”; c corresponds to a longitude
of E(C) — then α1 (respectively, α2) induces the Zl-automorphism

α1 : (Πl
(C1)Q

)ab
∼→ (Πl

(C1)Q
)ab; a0 7→ as(0), a1 7→ as(1), a3 7→ as(3), a∞ 7→ as(∞)

(respectively,

α2 : (Πl
(C2)Q

)ab
∼→ (Πl

(C2)Q
)ab; b 7→ −b, c 7→ −c, dx 7→ d−x, d−x 7→ dx).

Now one verifies easily that the rank of the Zl-submodule ⊆ (Πl
(C1)Q

)ab (re-

spectively, ⊆ (Πl
(C2)Q

)ab) consisting of elements ∈ (Πl
(C1)Q

)ab (respectively, ∈
(Πl

(C2)Q
)ab) fixed by α1 (respectively, α2) is 1 (respectively, 0). Thus, Claim

3.4.B follows from a similar argument to the argument applied in the final por-
tion of the proof of Claim 3.4.A.

In light of Claim 3.4.B, for every open subgroup N ⊆ Out(FΣ
m), we have

ZOut(FΣ
m)(N) ⊆ ZOut(FΣ

m)(H1 ∩N) ∩ ZOut(FΣ
m)(H2 ∩N) = {1}.

This completes the proof of Lemma 3.4 in the case where m = 3.
Finally, we consider the case where m ≥ 4. In this case, by considering

the hyperbolic curve C over a number field K ⊆ Q obtained by removing
{r1, r2, . . . , rm+1} — where ri are distinct rational numbers — from P1

K such
that AutQ(CQ) = {1}, it follows from a similar argument to the argument ap-
plied in the final portion of the proof of Claim 3.4.A that:

Claim 3.4.C: There exists a closed subgroup H ⊆ Out(FΣ
m) such that

for every open subgroup H ′ ⊆ H, it holds that

ZOut(FΣ
m)(H

′) = {1}.

In light of Claim 3.4.C, the slimness of Out(FΣ
m) [where m ≥ 4] follows imme-

diately. This completes the proof of Lemma 3.4.
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Remark 3.4.1 Lemma 3.4 in the case where m ≥ 4 also follows immediately
from [6], Theorem A.

Corollary 3.5. Let m ≥ 2 be an integer; Σ ⊆ Primes a subset such that either
♯Σ = 1 or ♯(Primes \ Σ) is finite; Fm a free profinite group of rank m. Then
Aut(FΣ

m) and Out(FΣ
m) are strongly indecomposable.

Proof. The strong indecomposability of Out(FΣ
m) follows immediately from The-

orem 3.2 and Lemma 3.4. The strong indecomposability of Aut(FΣ
m) follows

immediately from Corollary 3.3 and Lemma 3.4. This completes the proof of
Corollary 3.5.
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